

LTTA - Learning Trainig and Teaching Activity

Higher vocational college for mechanical engineering and woodworking

Principal:

Igor Hanc, MSc

PROJECT VACIDE ROBOT THOR

Project

Mentors

- Igor Hanc
- Alojz Zupančič
- Aleksander Kustec

Students

- Luka Flego
- Aljaž Pivk
- Matic Jovanovič
- Matej Meglič
- Miha Prezelj
- Urban Tratnik
- Urban Verbič

3D printing

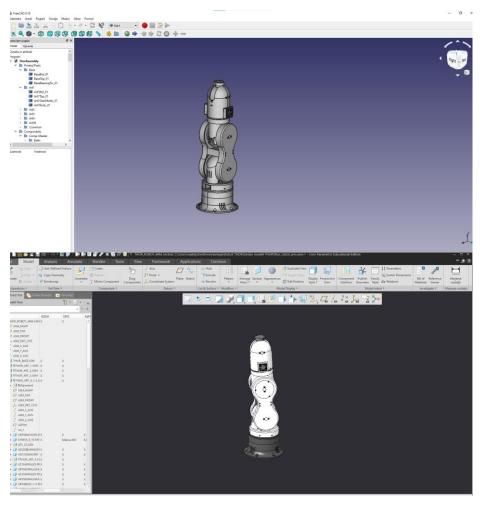
- Matej Praprotnik
- Iztok Jože Basaj

CNC programming & manufacturing

- Primuž Šturm
- Matjaž Luznar

Coordination, planning, purchasing

• Ivan Štrukelj

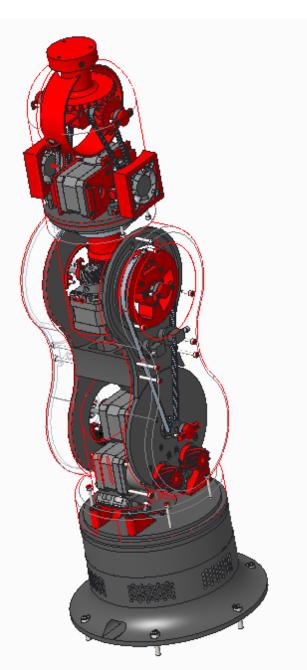


Design review

- Original design in FreeCAD
 - Including STL files for 3D printing
- Transfer of design to Creo 5.0
 - Using STEP files
- Design review:
 - At least 30 % of all parts must be machined!
- To find out how others approached of making and assembling a robot!

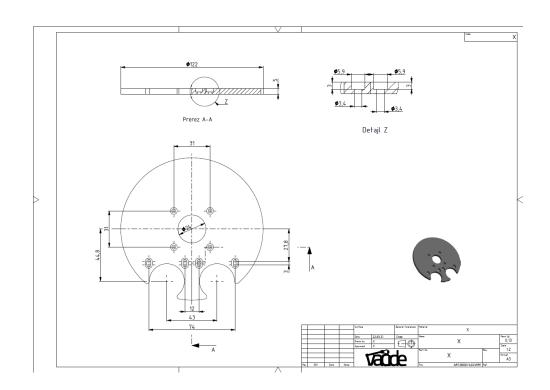
Design and redesign of robot

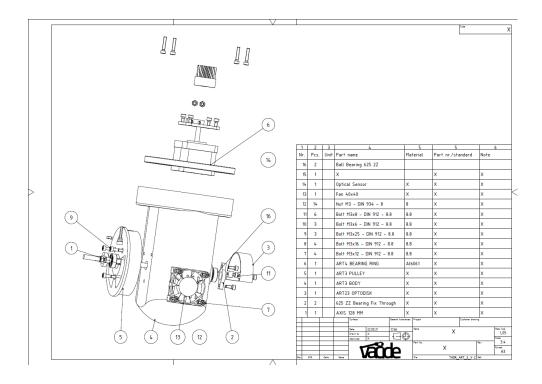
- Research how others approached of making and assembling a robot
- Inspected where everything could get into trouble
- Design for manufacturing and assembly?
 - How to make parts? Printing, turning, milling ...
 - How to put parts together?
 - Would they fit?



Redesign of robot

- 3D printed parts (red):
 - PLA
- Machined parts (grey)
 - Aluminium





Drawings

Bill of Materials

- Make or Buy?
- Make:
 - 3D printed parts,
 - Machined parts
- Buy:
 - Bearings
 - Fasteners (bolts, nuts ...)
 - Electric motors
 - Wires, sensors ...
 - Controller components

No.	Component name	Quantity	make/buy	provider	Costs
1	Barrel Jack Connector Control PCB	1	PP	VHS BW	0.57 €
2	Female Pins Control PCB	112	PP	VHS BW	2.34 €
3	3 Wire female connectors Sensor PCBs	5	PP	VHS BW	2.02 €
5	Motor Nema 17; L=40mm; Holding torque: 39.22 N.cm	1	PP	VHS BW	
6	Motor Nema 17; L=34mm; 5.18:1 mechanical reduction; Holding torque: 121.2 N.cm	3	PP	VHS BW	124.99€
7	Motor Nema 17 L=34mm; Holding torque: 21.57 N.cm	3	PP	VHS BW	
13	Cooper Plate 36x16mm Sensor PCBs	4	PP	VHS BW	4.98 €
24	Bus Wire 2x36 Control PCB	1	PP	VHS BW	29.90€
35	40mm Fan Control PCB	6	PP	VHS BW	10.15 €
40	Arduino Mega	1	PP	VHS BW	7.84 €
41	Micro Endstop (Straight type)	1	PP	VHS BW	1.66 €
42	Cooper Plate 120x91mm Control PCB (9x15)	1	PP	VHS BW	1.10 €
43	A4988 Stepper Motor Driver Control PCB	7	PP	VHS BW	19.95 €
44	25V 100uF Capacitor Control PCB	7	PP	VHS BW	0.53 €
45	10kΩ Resistor Control PCB	7	PP	VHS BW	0.38 €
46	Male angled pin Sensor PCBs	12	PP	VHS BW	78.00 €
47	Male Pins Control PCB	97	PP	VHS BW	11.05 €
48	10kΩ Resisto Sensor PCBs	4	PP	VHS BW	0.83€
49	220Ω Resistor Sensor PCBs	4	PP	VHS BW	0.79 €
50	Optocoupler Sensor PCBs	4	рр	VHS BW	0.88€
51	Metters of wire Sensor PCBs	3	PP	VHS BW	55.50 €
					353.46 €

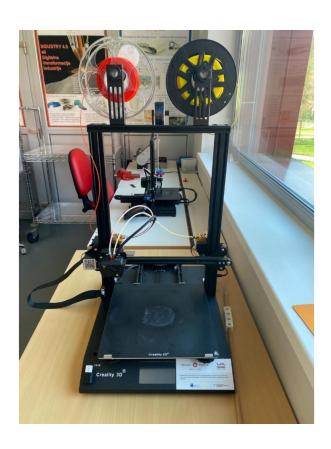
Purchasing of parts and materials

- Finding raw materials
 - Filaments,
 - Al profiles
- Purchasing components:
 - EU or world wide
 - Finding matching parts
- Searching for pulleys and belts in EU
 - Checking the length

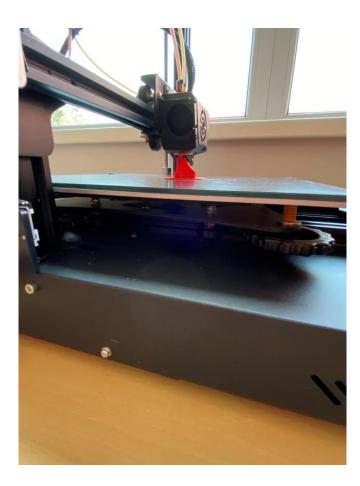
Manufacturing process

Overview of 3D Printing Models:

- Selection of filament: PLA
 - Possibilities of using other materials (ABS, ACE)
- Material consumption estimates
- Overview of printing settings:
 - Temperature,
 - Speed,
 - Wall thickness,
 - Consumption of filament



3D Print



3D Print

3D Print

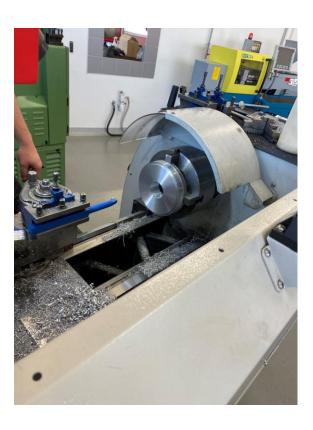
3D printing process:

- 3D modelling in Creo,
- Preparing STL files
- Creating G code for printer
- Transfering G code to printer

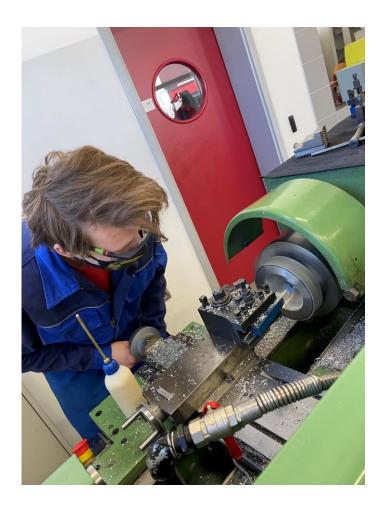
Production of aluminium pieces

Manufacturing process:

- Preparing workpieces
- Processing with classical machines:
 - turning,
 - milling,
 - Drilling
- CNC machining:
 - Modelling,
 - CNC programming,
 - Machining.



Production of aluminium pieces



Production of aluminum pieces

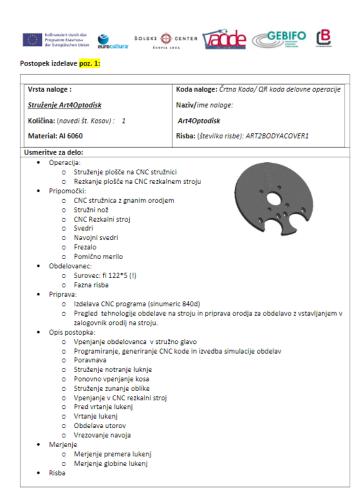


Production of aluminum pieces

Assembling the robot

- Approx. 90 % of all parts is finished
 - Some smaller parts are still in production
 - To be finished by the end of May
- Wireing of EM and sensors is completed
- Most of the subbasemblies have been (pre) assembled/tested for fit
 - We revised and modified some part for better fit
 - Have to pay attention to warpage and shrinkage of 3D printed parts

Assembling the robot



Manufacturing and assembly instructions

First draft of instructions:

- Description of mfg process/operation
- List of machines and tools used in operation,
- Working procedure,
- Measuring procedure

Project summary

What was OK?

- First student project in vocational college.
- Great cooperation and enthusiasm of students
- Good cooperation between college and middle school

Not so OK?

- COVID19
- Occasional work overload of participants
- Production planning workshop occupancy

What is next?

- Assembling and testing of the robot
 - With VHS
- Working instructions for students:
 - 3D models,
 - Drawings,
 - Operations instructions,
- Didactic material:
 - Manual for teachers

